featured

Visual Abstraction of Large Scale Geospatial Origin-Destination Movement Data.

Visual Abstraction of Large Scale Geospatial Origin-Destination Movement Data.

Abstract

A variety of human movement datasets are represented in an Origin-Destination(OD) form, such as taxi trips, mobile phone locations, etc. As a commonly-used method to visualize OD data, flow map always fails to discover patterns of human mobility, due to massive intersections and occlusions of lines on a 2D geographical map. A large number of techniques have been proposed to reduce visual clutter of flow maps, such as filtering, clustering and edge bundling, but the correlations of OD flows are often neglected, which makes the simplified OD flow map present little semantic information. In this paper, a characterization of OD flows is established based on an analogy between OD flows and natural language processing (NPL) terms. Then, an iterative multi-objective sampling scheme is designed to select OD flows in a vectorized representation space. To enhance the readability of sampled OD flows, a set of meaningful visual encodings are designed to present the interactions of OD flows. We design and implement a visual exploration system that supports visual inspection and quantitative evaluation from a variety of perspectives. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system in reducing the visual clutter and enhancing correlations of OD flows.

Publication
IEEE Transactions on Visualization and Computer Graphics